This file is the output file for the analyses in the paper Grosche, B., H. Katayama, M. Hoshi, K. N. Apsalikov, T. Belikhina, Y. Noso and N. Takeichi (2017). "Thyroid diseases in populations residing near the Semipalatinsk
Nuclear Test Site, Kazakhstan: Results from an 11 years series of medical examinations." SM JPubl Health Epidemiol 3(1).
For analyses, SPSS (Statistical Package for Social Sciences) was used.
*** Freqs vars for risk analyses ***
Frequencies

Notes		
Output Created		12-MAR-2017 17:57:42
Comments		
Input	Data	
		D: Ibegro\Documents\Artikel\2015\05 KAZ-SD-RERF\Data\Analysislnodoubl es(complete)\nodoubles(complete)v2.
	Filter	<none>
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	1067
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics are based on all cases with valid data.
Syntax		FREQUENCIES
		VARIABLES=Function2 thycan nodule agegrp sex affsett exp2 /STATISTICS=MINIMUM MAXIMUM MEAN MEDIAN /ORDER= ANALYSIS .
Resources	Elapsed Time	0:00:00,03
	Total Values Allowed	149796

Statistics

		Hypothyroi dism	thyroid cancer	Thyroid nodule	age group	sex	affected settlement	Exposed
N	Valid	1067	1055	1055	1062	1060	1061	1033
	Missing	0	12	12	5	7	6	34
Mean		,06	,04	,29	5,47	1,78	,67	,44
Median		,00	,00	,00	6,00	2,00	1,00	,00
Minimum		0	0	0	1	1	0	0
Maximum		1	1	1	8	2	1	1

Frequency Table
Hypothyroidism

					Cumulative Percent
Valid	no	1004	94,1	94,1	94,1
	yes	63	5,9	5,9	100,0
	Total	1067	100,0	100,0	

thyroid cancer

					Cumulative Percent
Valid	no	1015	95,1	96,2	96,2
	yes	40	3,7	3,8	100,0
	Total	1055	98,9	100,0	
Missing	System	12	1,1		
Total		1067	100,0		

Thyroid nodule

					Cumulative Percent
Valid	no nodule	751	70,4	71,2	71,2
	nodule	304	28,5	28,8	100,0
	Total	1055	98,9	100,0	
Missing	System	12	1,1		
Total		1067	100,0		

sex

					Cumulative Percent
Falid	male	233	21,8	22,0	22,0
	female	827	77,5	78,0	100,0
	Total	1060	99,3	100,0	
Missing	n.a.	7	, 7		
Total		1067	100,0		

affected settlement

					Cumulative Percent
Valid	not	Frequency	Percent	Valid Percent	32,6
	affected	346	32,4	32,6	300,0
	affected	715	67,0	67,4	100
	Total	1061	99,4	100,0	
Missing	not clear	6	, 6		
Total		1067	100,0		

Exposed

					Cumulative Percent
Valid	no	577	54,1	55,9	55,9
	yes	456	42,7	44,1	100,0
	Total	1033	96,8	100,0	
Missing	not clear	34	3,2		
Total		1067	100,0		

Crosstabs

Notes		
Output Created		12-MAR-2017 17:57:42
Comments		
Input	Data	
		D: Ibegro\Documents\Artikel\2015\05_
		KAZ-SD-RERF\Data\Analysis\nodoubl
		es(complete)\nodoubles(complete)v2. sav
	Filter	<none>
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	1067
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.

	Cases Used
Syntax	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.
Resources	CROSSTABS/TABLES=exp2 BY affsett
	Elapsed Time Dimensions Requested Cells Available

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N		Percent	N	Percent	N
Exposed settlement	affected					

Exposed * affected settlement Crosstabulation
Count

		affected settlement		
		not affected	affected	
Expose	no	332	244	576
d	yes	6	449	455
Total		338	693	1031

*** Affected settlements ***

Frequencies

Notes		
Output Created Comments		12-MAR-2017 17:57:42
Input	Data	
		D: Ibegro\Documents\Artikel\2015\05 KAZ-SD-RERF\Data\Analysis\nodoubl es(complete)\nodoubles(complete)v2.
		sav
	Filter	affected sett. (FILTER)
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	715
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.

		Statistics						
		Hypothyroi dism	thyroid cancer	Thyroid nodule	age group	sex	affected settlement	Exposed
N	Valid	715	709	709	714	712	715	693
	Missing	0	6	6	1	3	0	22
Mean		,05	,03	,28	5,65	1,75	1,00	,65
Median		,00	,00	,00	6,00	2,00	1,00	1,00
Minimum		0	0	0	1	1	1	0
Maximum		1	1	1	8	2	1	1

Frequency Table
Hypothyroidism

					Cumulative Percent
Valid	no	677	94,7	94,7	94,7
	yes	38	5,3	5,3	100,0
	Total	715	100,0	100,0	

thyroid cancer

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	no	685	95,8	96,6	96,6
	yes	24	3,4	3,4	100,0
	Total	709	99,2	100,0	
Missing	System	6	,8		
Total		715	100,0		

Thyroid nodule

				Cumulative Percent	
Valid	no nodule	508	71,0	71,7	71,7

	nodule	201	28,1	28,3	100,0
	Total	709	99,2	100,0	
Missing	System	6	, 8		
Total		715	100,0		

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0-14	1	,1	,1	,1
	15-24	2	,3	,3	,4
	25-34	23	3,2	3,2	3,6
	35-44	47	6,6	6,6	10,2
	45-54	198	27,7	27,7	38,0
	55-64	326	45,6	45,7	83,6
	65-74	109	15,2	15,3	98,9
	75+	8	1,1	1,1	100,0
	Total	714	99,9	100,0	
Missing	n.a.	1	, 1		
Total		715	100,0		

sex

					Cumulative Percent
Valid	male	177	24,8	24,9	24,9
	female	535	74,8	75,1	100,0
	Total	712	99,6	100,0	
Missing	n.a.	3	, 4		
Total		715	100,0		

affected settlement

| | Frequency | Percent | Valid Percent | Cumulative
 Percent |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Valid \quad affected | 715 | 100,0 | 100,0 | 100,0 |

Exposed

					Cumulative Percent
Valid	no	244	34,1	35,2	35,2
	yes	449	62,8	64,8	100,0
	Total	693	96,9	100,0	
Missing	not clear	22	3,1		
Total		715	100,0		

*** Hypothyroidism ***

Frequencies

Statistics

	Hypothyroi dism	age group	sex	affected settlement	Exposed	Medication
N	Valid	1067	1062	1060	1061	1033
	Missing	0	5	7	6	34
Mean		, 06	5,47	1,78	, 67	, 44
Median	, 00	6,00	2,00	1,00	, 00	1,67
Minimum	0	1	1	0,00		
Maximum	1	8	2	0	1	

Frequency Table

Hypothyroidism

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid no	1004	94,1	94,1	94,1

yes	63	5,9	5,9	100,0
Total	1067	100,0	100,0	

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0-14	23	2,2	2,2	2,2
	15-24	8	,7	,8	2,9
	25-34	28	2,6	2,6	5,6
	35-44	85	8,0	8,0	13,6
	45-54	323	30,3	30,4	44,0
	55-64	442	41,4	41,6	85,6
	65-74	142	13,3	13,4	99,0
	75+	11	1,0	1,0	100,0
	Total	1062	99,5	100,0	
Missing	n.a.	5	,5		
Total		1067	100,0		

					Cumulative Percent
Valid	male	233	21,8	22,0	22,0
	female	827	77,5	78,0	100,0
	Total	1060	99,3	100,0	
Missing	n.a.	7	, 7		
Total		1067	100,0		

affected settlement

					Cumulative Percent
Valid	not	Frequency	Percent	Valid Percent	32,6
	affected	346	32,4	32,6	100,0
	affected	715	67,0	67,4	
	Total	1061	99,4	100,0	
Missing	not clear	6	, 6		
Total		1067	100,0		

Exposed

					Cumulative Percent
Valid	no	577	54,1	55,9	55,9
	yes	456	42,7	44,1	100,0
	Total	1033	96,8	100,0	
Missing	not clear	34	3,2		

Total	1067	100,0	

Medication

					Cumulative Percent
Valid	yes	90	8,4	33,2	33,2
	no	181	17,0	66,8	100,0
	Total	271	25,4	100,0	
Missing	n.a.	796	74,6		
Total		1067	100,0		

*** Hypothyroidism ***
** simple crosstabulation **

Crosstabs

Notes			
Output Created		12-MAR-2017 17:57:42	
Comments			
Input	Data		
		D:IbegrolDocuments\|Artikel	2015\05 KAZ-SD-RERF\Data\Analysis\nodoubl es(complete)) nodoubles(complete)v2. sav
	Filter	<none>	
	Weight	<none>	
	Split File	<none>	
	N of Rows in Working Data File	1067	
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.	
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.	
Syntax			
		CROSSTABS /TABLES=agegrp sex affsett exp2 medicine BY Function2 /FORMAT= AVALUE TABLES /STATISTIC=CHISQ CMH(1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL .	
Resources	Elapsed Time	0:00:00,04	
	Dimensions Requested	2	
	Cells Available	116508	

Warnings

The Tests for Homogeneity of the Odds Ratio table and the Mantel-Haenszel Common Odds Ratio Estimate table are not computed for age group * Hypothyroidism, because either (1) the group variable does not have exactly two distinct non-missing values or/and (2) the response variable does not have exactly two distinct non-missing values.

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
age group * Hypothyroidism	1062	99,5\%	5	,5\%	1067	100,0\%
sex * Hypothyroidism	1060	99,3\%	7	,7\%	1067	100,0\%
affected settlement * Hypothyroidism	1061	99,4\%	6	,6\%	1067	100,0\%
Exposed * Hypothyroidism	1033	96,8\%	34	3,2\%	1067	100,0\%
Medication * Hypothyroidism	271	25,4\%	796	74,6\%	1067	100,0\%

age group * Hypothyroidism

			Hypothyroidism		Total
			no	yes	
age group	0-14	Count	22	1	23
		Expected Count	21,6	1,4	23,0
	15-24	Count	8	0	8
		Expected Count	7,5	,5	8,0
	25-34	Count	28	0	28
		Expected Count	26,3	1,7	28,0
	35-44	Count	74	11	85
		Expected Count	80,0	5,0	85,0
	45-54	Count	306	17	323
		Expected Count	303,8	19,2	323,0
	55-64	Count	420	22	442
		Expected Count	415,8	26,2	442,0
	65-74	Count	131	11	142
		Expected Count	133,6	8,4	142,0
	75+	Count	10	1	11
		Expected Count	10,3	,7	11,0
Total		Count	999	63	1062

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$11,872(\mathrm{a})$	7	, 105
Likelihood Ratio	12,186	7	, 095
Linear-by-Linear	, 059		1

a 4 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is, 47 .

sex * Hypothyroidism

Crosstab

			Hypothyroidism		Total
			no	yes	
sex	male	Count	227	6	233
		Expected Count	219,2	13,8	233,0
	female	Count	770	57	827
		Expected Count	777,8	49,2	827,0
Total		Count	997	63	1060
		Expected Count	997,0	63,0	1060,0

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	6,061(b)	1	,014		
Continuity	5,313	1	,021		
Correction(a)	5,313	1	,021		
Likelihood Ratio	7,208	1	,007		
Fisher's Exact Test				,012	,007
Linear-by-Linear Association	6,055	1	,014		
N of Valid Cases	1060				

a Computed only for a 2×2 table cells (, 0%) have expected count less than 5 . The minimum expected count is 13,85 .

Tests of Homogeneity of the Odds Ratio

| | Chi-Squared | df | Asymp. Sig.
 (2-sided) |
| :--- | ---: | ---: | ---: | ---: |
| Breslow-Day | , 000 | 0 | |

| Tarone's | 000 | 0 |
| :--- | :--- | :--- | :--- | :--- |

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	6,061	1	, 014
Mantel-Haenszel	5,308	1	, 021

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		2,801	
\ln (Estimate)		1,030	
Std. Error of In(Estimate)		, 436	
Asymp. Sig. (2-sided)			, 018
Asymp. 95\%	Common Odds Ratio	Lower Bound	1,192
Confidence Interval		Upper Bound	6,580
	In(Common Odds	Lower Bound	, 176
	Ratio)	Upper Bound	1,884

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.
affected settlement * Hypothyroidism

Crosstab

			Hypothyroidism		Total
			no	yes	
affected settlement	not affected	Count	321	25	346
		Expected Count	325,5	20,5	346,0
	affected	Count	677	38	715
Total		Expected Count	672,5	42,5	715,0
		Count	998	63	1061
		Expected Count	998,0	63,0	1061,0

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	$1,524(\mathrm{~b})$	1	, 217		
Continuity	1,201	1	, 273		
Correction(a)	1,479	1	, 224		
Likelihood Ratio					
Fisher's Exact Test	1,523	1	, 217		, 137
Linear-by-Linear					
Association					

N of Valid Cases	1061

a Computed only for a 2×2 table
b 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 20,54 .

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)	
Breslow-Day	, 000	0		.
Tarone's	, 000		0	

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	1,524	1	, 217
Mantel-Haenszel	1,200		1

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		, 721	
\ln (Estimate)		,- 328	
Std. Error of \ln (Estimate)		, 266	
Asymp. Sig. (2-sided)			, 219
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 428
Confidence Interval		Upper Bound	1,215
	In(Common Odds	Lower Bound	,- 849
	Ratio)	Upper Bound	, 194

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.

Exposed * Hypothyroidism

Crosstab

			Hypothyroidism		Total
			no	yes	
Exposed	no	Count	526	51	577
		Expected Count	541,8	35,2	577,0
	yes	Count	444	12	456
		Expected Count	428,2	27,8	456,0
Total		Count	970	63	1033
		Expected Count	970,0	63,0	1033,0

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	17,137(b)	1	,000		
Continuity	16,070	1	,000		
Correction(a)	16,070	1	,000		
Likelihood Ratio	18,720	1	,000		
Fisher's Exact Test				,000	,000
Linear-by-Linear Association	17,120	1	,000		
N of Valid Cases	1033				

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	, 000	0	
Tarone's	, 000	0	.

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	17,137	1	, 000
Mantel-Haenszel	16,054		1

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		, 279	
\ln (Estimate)		$-1,277$	
Std. Error of In(Estimate)		, 327	
Asymp. Sig. (2-sided)			, 000
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 147
Confidence Interval		Upper Bound	, 529
	In(Common Odds	Lower Bound	$-1,919$
	Ratio)	Upper Bound	,- 636

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.

Medication * Hypothyroidism

			Hypothyroidism		Total
			no	yes	
Medication		Count	83	7	90
		Expected Count	87,7	2,3	90,0
	no	Count	181	0	181
		Expected Count	176,3	4,7	181,0
Total		Count	264	7	271
		Expected Count	264,0	7,0	271,0

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	$14,451(b)$	1	, 000		
Continuity	11,525	1	, 001		
Correction(a)	15,809		1	, 000	
Likelihood Ratio					
Fisher's Exact Test	14,398		1	, 000	
Linear-by-Linear	271				
Association					
N of Valid Cases					

b 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is 2,32

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)	
Breslow-Day	.		.	
Tarone's	.		.	

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	14,451	1	, 000
Mantel-Haenszel	11,483	1	, 001

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the
number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate	, 000
In(Estimate)	\cdot
Std. Error of $\ln ($ Estimate)	\cdot
Asymp. Sig. (2-sided)	.

Asymp. 95\%	Common Odds Ratio	Lower Bound	.
Confidence Interval		Upper Bound	.
	In(Common Odds	Lower Bound	\cdot
	Ratio)	Upper Bound	.

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.
*** Hypothyroidism ***
** stratified by age or sex **

Crosstabs

Notes		
Output Created		12-MAR-2017 17:57:42
Comments		
Input	Data	
		D: IbegrolDocuments\Artikel\2015\05 KAZ-SD-RERF\Data\AnalysisInodoubl es(complete)\nodoubles(complete)v2.
		sav
	Filter	<none>
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	1067
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.
Syntax		
		CROSSTABS /TABLES=exp2 BY Function2 BY agegrp sex /FORMAT= AVALUE TABLES /STATISTIC=CHISQ CMH(1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL
Resources	Elapsed Time	0:00:15,65
	Dimensions Requested	3
	Cells Available	95325

Case Processing Summary

Cases					
Valid		Missing		Total	
N	Percent	N	Percent	N	Percent

Exposed * Hypothyroidism * age group	1032	$96,7 \%$	35	$3,3 \%$	1067	$100,0 \%$
Exposed * Hypothyroidism * sex	1030	$96,5 \%$	37	$3,5 \%$	1067	$100,0 \%$

Exposed * Hypothyroidism * age group

65-74	Exposed	no	Expected Count Count	411,0 42	22,0 3	433,0 45
75+		yes	Expected Count Count	41,3 81	3,7 8	45,0 89
	Total		Expected Count Count	81,7 123	7,3 11	89,0 134
			Expected Count	123,0	11,0	134,0
	Exposed	no	Count	2	1	3
		ye	Expected Count Count	2,7 8	,3	3,0 8
			Expected Count	8 7,3	,7	8 8,0
	Total		Count	10	1	11
			Expected Count	10,0	1,0	11,0

Chi-Square Tests

Computed only for a 2×2 table
No statistics are computed because Exposed is a constant
c No statistics are computed because Exposed and Hypothyroidism are constants
d 2 cells ($50,0 \%$) have expected count less than 5 . The minimum expected count is ,13.
e 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 5,04
$f 0$ cells (0%) have expected count less than 5 . The minimum expected count is 8,54
g 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 3,69
h 3 cells $(75,0 \%)$ have expected count less than 5 . The minimum expected count is, 27 .

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	12,175	4	, 016
Tarone's	12,101	4	, 017

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	19,810	1	, 000
Mantel-Haenszel	18,383	1	, 000

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

In(Estimate)			$-1,562$
Std. Error of \ln (Estimate)		, 368	
Asymp. Sig. (2-sided)			, 000
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 102
Confidence Interval		Upper Bound	, 431
	In(Common Odds	Lower Bound	$-2,282$
	Ratio)	Upper Bound	,- 841

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.

Exposed * Hypothyroidism * sex

Crosstab

Chi-Square Tests

sex		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
male	Pearson				,698	,498
	Chi-Square	,160(b)	1	,689		
	Continuity	,000	1	1,000		
	Correction(a)	,000	1	1,000		
	Likelihood	,158	1	,691		
	Ratio					
	Fisher's Exact					
	Linear-by-Linea					
	r Association	,160	1	,689		
	N of Valid					
	Cases	226				
female	Pearson					
	Chi-Square	15,178(c)	1	,000		
	Continuity	14,105	1	,000		

Correction(a) Likelihood Ratio Fisher's Exact Test Linear-by-Linea r Association N of Valid Cases	$\begin{array}{r} 17,082 \\ 15,159 \\ 804 \end{array}$	1	$\begin{aligned} & 000 \\ & , 000 \end{aligned}$,000	,000

a Computed only for a 2×2 table
b 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is 2,52
c 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 22,90

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	1,351	1	, 245
Tarone's	1,348	1	, 246

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	14,606	1	, 000
Mantel-Haenszel	13,587	1	, 000

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		, 297	
In(Estimate)		$-1,215$	
Std. Error of In(Estimate)		, 332	
Asymp. Sig. (2-sided)			, 000
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 155
Confidence Interval		Upper Bound	, 569
	In(Common Odds	Lower Bound	$-1,866$
	Ratio)	Upper Bound	,- 563

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.
*** Hypothyroidism ***
** stratified by age and sex **

Crosstabs

Output Created	12-MAR-2017 17:57:57

Comments Input	Data	D:Ibegro\Documents\Artikel\|2015\05 KAZ-SD-RERF\Data\Analysis\nodoubl es(complete)\nodoubles(complete)v2. sav
	Filter	<none>
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	1067
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.
Syntax		
		CROSSTABS /TABLES=exp2 BY Function2 BY agegrp BY sex /FORMAT= AVALUE TABLES /STATISTIC=CHISQ CMH(1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL .
Resources	Elapsed Time	0:00:01,41
	Dimensions Requested	4
	Cells Available	80659

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N		Percent	N	Percent	N
Exposed * Hypothyroidism * age group *sex	1030	$96,5 \%$	37	$3,5 \%$	1067	$100,0 \%$

Exposed * Hypothyroidism * age group * sex Crosstabulation

					$\begin{aligned} & \overrightarrow{\mathrm{o}} \\ & \stackrel{3}{3} \\ & \frac{\overrightarrow{0}}{\bar{D}} \end{aligned}$																																	
	セ				$\stackrel{\stackrel{\rightharpoonup}{+}}{\stackrel{1}{+}}$						N +						$\begin{aligned} & \text { B } \\ & M \\ & 1 \\ & 1 \end{aligned}$						¢1 1						Er 0 0 i				$\xrightarrow{\omega}$				N 0 $山$ \sim	
			$\begin{aligned} & -1 \\ & \underline{0} \end{aligned}$				$\begin{aligned} & \text {-1 } \\ & \underline{\oplus} \end{aligned}$						$\begin{aligned} & \text {-- } \\ & \stackrel{\text { N }}{2} \end{aligned}$						$\begin{aligned} & \text {-1 } \\ & \stackrel{(1}{\oplus} \end{aligned}$						$\begin{aligned} & \text { - } \\ & \underline{\stackrel{1}{\mathrm{~N}}} \end{aligned}$						$\xrightarrow{-1}$				$\stackrel{-1}{\stackrel{-1}{+}}$		$\begin{aligned} & \text { m } \\ & \text { 区 } \\ & \text { O} \\ & \text { N } \\ & \text { ® } \end{aligned}$	
	ठ				ठ				历		ठ				§		ठ				§		ठ				¢		ठ				ठ				ठ	
			$\stackrel{\cap}{\stackrel{\circ}{\square}}$										$\begin{aligned} & 0 \\ & \stackrel{O}{3} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{0}{3} \\ & \end{aligned}$						$\begin{aligned} & 0 \\ & \stackrel{O}{3} \\ & \end{aligned}$						$\begin{aligned} & \text { O} \\ & \stackrel{0}{3} \\ & \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{O}{\leftrightharpoons} \\ & \end{aligned}$		$$	$\begin{aligned} \dot{3} \\ \\ \hline \end{aligned}$	$$		$\begin{aligned} & 0 \\ & \vdots \\ & \hline 0 \end{aligned}$		$\begin{aligned} & 10 \\ & 0 \\ & \hline 1 \end{aligned}$	
0		N		$\begin{aligned} & \vec{N} \\ & 0 \end{aligned}$	N	${ }_{0}^{\omega}$	ω	$\stackrel{\rightharpoonup}{0}$	\rightarrow	N	N	$\begin{aligned} & N \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	N	$\begin{aligned} & \text { N } \\ & \text { O } \end{aligned}$	$\stackrel{\sim}{\sim}$	N		$\begin{aligned} & \bullet \\ & \bullet \\ & 0 \end{aligned}$	\odot	$\begin{aligned} & \text { N } \\ & \text { NO } \end{aligned}$	ω	$\begin{aligned} & N \\ & \sim \\ & \sim \end{aligned}$	N	∞ 0 0	∞	ω 0 0	ω	co	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{0}$	\checkmark	\cdots	\checkmark	$\stackrel{\omega}{0}$	ω	\cdots	ω	ω_{0}^{ω}
		$\stackrel{\rightharpoonup}{0}$		$\stackrel{\rightharpoonup}{0}$	\rightarrow							$\stackrel{\omega}{0}$	ω	N	N	\cdots	\rightarrow	N	N	$\stackrel{\rightharpoonup}{c}$	\rightarrow	cr	－							$\stackrel{\rightharpoonup}{0}$	\rightarrow	$\stackrel{\rightharpoonup}{0}$	\rightarrow					
0	or	$\begin{gathered} \vec{\omega} \\ 0 \end{gathered}$		$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\omega}$	${ }_{0}^{\omega}$	ω	$\stackrel{\rightharpoonup}{0}$	\rightarrow	No		$\stackrel{\omega}{\square}$	$\stackrel{\omega}{\sim}$	$\underset{\sim}{N}$	N	$\stackrel{\infty}{0}$		$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{0}{0}}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\text { I }}{0}$	\pm	$\begin{aligned} & \mathrm{N} \\ & 0 \end{aligned}$	N	－ 0 0 0	∞	$\begin{gathered} \underset{\sim}{\omega} \\ 0 \end{gathered}$	ω	$\begin{aligned} & \omega \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\omega}{\sim}$	$\stackrel{\infty}{\circ}$	∞	\cdots	∞	$\stackrel{\omega}{0}$	ω	\cdots	ω	${ }_{0}^{\omega}$

Chi-Square Tests

a Computed only for a 2×2 table
No statistics are computed because Exposed and Hypothyroidism are constants.
c No statistics are computed because Exposed is a constant.
d No statistics are computed because Hypothyroidism is a constant.
e 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is ,53.
f 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is, 77 .
g 2 cells ($50,0 \%$) have expected count less than 5 . The minimum expected count is, 13 .
h 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 4,09
i 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 8,52
j 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 2,87 .
k 3 cells $(75,0 \%)$ have expected count less than 5 . The minimum expected count is ,13.

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	13,905	6	, 031
Tarone's	13,863		6

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	17,436	1	, 000
Mantel-Haenszel	16,036	1	, 000

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		, 224	
$\ln ($ Estimate)		$-1,495$	
Std. Error of \ln (Estimate)		, 372	
Asymp. Sig. (2-sided)			, 000
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 108
Confidence Interval		Upper Bound	, 465
	In(Common Odds	Lower Bound	$-2,225$
	Ratio)	Upper Bound	,- 766

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.
*** Hypothyroidism ***
** stratified by age and sex and medication **

Crosstabs

Notes

Output Created Comments	12-MAR-2017 17:57:59

Input	Data	D: Ibegro\Documents\Artikel\|2015\05 KAZ-SD-RERF\Data\AnalysisInodoubl es(complete)\nodoubles(complete)v2. sav
	Filter	<none>
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	1067
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.
Syntax		
		CROSSTABS /TABLES=exp2 BY Function2 BY agegrp BY sex BY medicine /FORMAT= AVALUE TABLES /STATISTIC=CHISQ CMH (1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL .
Resources	Elapsed Time	0:00:00,02
	Dimensions Requested	5
	Cells Available	69905

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Exposed * Hypothyroidism * age group * sex * Medication	262	24,6\%	805	75,4\%	1067	100,0\%

Exposed * Hypothyroidism * age group * sex * Medication Crosstabulation

Medication	sex	age group		no		Hypothyroidism		Total
						no	yes	
yes	male	15-24	Exposed		Count	1		1
					Expected Count	1,0		1,0
			Total		Count	1		1
					Expected Count	1,0		1,0
		45-54	Exposed	no	Count	2		2
					Expected Count	2,0		2,0
				yes	Count	2		2
					Expected	2,0		2,0

		yes	Count	18	18
			Expected Count	18,0	18,0
	Total		Count	35	35
			Expected Count	35,0	35,0
25-34	Exposed	no	Count	9	9
			Expected	9,0	9,0
			Count	9,0	9,0
	Total		Count	9	9
			Expected	9,0	9,0
			Count	9,0	9,0
35-44	Exposed	no	Count	6	6
			Expected Count	6,0	6,0
	Total		Count	6	6
			Expected		6,0
			Count	6,0	6,0
65-74	Exposed	no	Count	1	1
			Expected Count	1,0	1,0
		yes	Count	1	1
			Expected	1,0	1,0
	Total		Count	2	2
			Expected Count	2,0	2,0
0-14	Exposed	no	Count	10	10
			Expected Count	10,0	10,0
	Total		Count	10	10
			Expected	10,0	10,0
			Count		

Chi-Square Tests

Medication	sex	age group		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
yes	male	15-24	Pearson					
			Chi-Square	.(b)				
			N of Valid Cases	1				
		45-54	Pearson	(c)				
			Chi-Square	.(c)				
			N of Valid	4				
			Cases	4				
		55-64	Pearson	1,333(d)	1	,248		
			Chi-Square	1,333(d)	1	,248		
			Continuity	,000	1	1,000		
			Correction(a)	,000	1	1,000		
			Likelihood	1,726	1	,189		
			Ratio					
			Fisher's Exact Test				1,000	,500
			Linear-by-Lin					
				1,000	1	,317		
			Association					
			N of Valid					
			Cases					
	female	45-54	Pearson	3,175(e)	1	,075		

Computed only for a 2×2 table
No statistics are computed because Exposed and Hypothyroidism are constants.
No statistics are computed because Hypothyroidism is a constan
d 4 cells $(100,0 \%)$ have expected count less than 5 . The minimum expected count is, 50
2 cells ($50,0 \%$) have expected count less than 5 . The minimum expected count is 1,60
f 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is , 45 .
g 4 cells $(100,0 \%)$ have expected count less than 5 . The minimum expected count is ,33

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	8,969	3	, 030
Tarone's	8,871		3

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	2,779	1	, 096

Mantel-Haenszel	1,414	1

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		, 251	
\ln (Estimate)		$-1,381$	
Std. Error of In(Estimate)		1,034	
Asymp. Sig. (2-sided)			, 182
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 033
Confidence Interval		Upper Bound	1,907
	In(Common Odds	Lower Bound	$-3,407$
	Ratio)	Upper Bound	, 646

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.
*** Hypothyroidism ***
** affected settlements only **
*** Hypothyroidism ***

* stratified by age and sex *

Crosstabs

Syntax		CROSSTABS /TABLES=exp2 BY Function2 BY agegrp BY sex /FORMAT= AVALUE TABLES /STATISTIC=CHISQ CMH(1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL .
Resources	Elapsed Time	0:00:00,03
	Dimensions Requested	4
	Cells Available	80659

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N		Percent	N	Percent	N
	691	$96,6 \%$	24	$3,4 \%$	715	$100,0 \%$

Exposed * Hypothyroidism * age group * sex Crosstabulation

sex	age group				Hypothyroidism		Total
					no	yes	
male	25-34	Exposed	no	Count	3		3
				Expected Count	3,0		3,0
		Total		Count	3		3
				Expected Count	3,0		3,0
	35-44	Exposed	no	Count	3		3
				Expected Count	3,0		3,0
		Total		Count	3		3
				Expected Count	3,0		3,0
	45-54	Exposed	no	Count	17		17
				Expected Count	17,0		17,0
			yes	Count	33		33
				Expected Count	33,0		33,0
		Total		Count	50		50
				Expected Count	50,0		50,0
	55-64	Exposed	no	Count	13	0	13
				Expected Count	12,9	,1	13,0
			yes	Count	73	1	74
				Expected Count	73,1	,9	74,0
		Total		Count	86	1	87
				Expected	86,0	1,0	87,0

female	65-74	Exposed	no	Count Count	4	1	5
				Expected Count Count	4,5 21	,5	5,0 23
		Total	yes	Expected Count Count	20,5 25	2,5 3	23,0 28
	75+	Exposed	yes	Expected Count Count	25,0 1	3,0	28,0 1
		Total		Expected Count Count	1,0 1		1,0 1
			no	Expected Count	1,0		1,0
	25-34	Exposed		Count	19		19
				Expected Count	19,0		19,0
		Total		Count	19		19
			no	Expected Count	19,0		19,0
	35-44	Exposed		Count	37	6	43
				Expected Count	37,1	5,9	43,0
			yes	Count	1	0	1
				Expected Count	,9	,1	1,0
		Total		Count	38	6	44
				Expected	38,0	6,0	44,0
	45-54	Exposed		Count	38,0 72	11	83
			no	Expected			
				Count	76,5	6,5	83,0
			yes	Count	57	0	57
				Expected Count	52,5	4,5	57,0
		Total		Count	129	11	140
				Expected	129,0	11,0	140,0
	55-64	Exposed	no	Count	38	7	45
				Expected Count	43,1	1,9	45,0
			yes	Count	183	3	186
				Expected Count	177,9	8,1	186,0
		Total		Count	221	10	231
				Expected Count	221,0	10,0	231,0
	65-74	Exposed	no	Count	10	1	11
				Expected Count	10,0	1,0	11,0
			yes	Count	59	6	65
				Expected Count	59,0	6,0	65,0
		Total		Count	69	7	76
				Expected Count	69,0	7,0	76,0
	75+	Exposed	yes	Count	7		7

	Total		Expected Count Count	7,0 7	7,0 7
15-24	Exposed	no	Expected Count Count	7,0	7,0 2
	Total		Expected Count Count	2,0	2,0
			Expected Count	2,0	2,0

Chi-Square Tests

sex	age group		Value	df	$\begin{gathered} \text { Asymp. Sig. } \\ \text { (2-sided) } \end{gathered}$	$\begin{gathered} \text { Exact Sig. } \\ \text { (2-sided) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Exact Sig. } \\ \text { (1-sided) } \\ \hline \end{gathered}$
male	25-34	Pearson					
		Chi-Square	(b)				
		N of Valid Cases	3				
	35-44	Pearson					
		Chi-Square	(b)				
		N of Valid Cases	3				
	45-54	Pearson					
		Chi-Square	.(c)				
		N of Valid	50				
	55-64	Peases					
		Chi-Square	,178(d)	1	,673		
		Continuity	,000	1	1,000		
		Correction(a)	,000	1			
		Likelihood Ratio	,326	1	,568		
		Ratio					
		Test				1,000	, 851
		Linear-by-Line		1			
		ar Association	,176	1	,675		
		N of Valid Cases	87				
	65-74	Pearson					
		Chi-Square	,549(e)	1	,459		
		Continuity	000	1	1,000		
		Correction(a)	,000	1	1,000		
		Likelihood	,474	1	,491		
		Ratio Fisher's Exact					
		Fisher's Exact Test				,459	,459
		Linear-by-Line					
		ar Association	,529	1	,467		
		N of Valid	28				
	75+	Cases					
	75+	Chi-Square	(b)				
		N of Valid	1				
		Cases					
female	25-34	Pearson					
		Chi-Square	(b)				
		N of Valid	19				

Computed only for a 2×2 table
No statistics are computed because Exposed and Hypothyroidism are constants.
No statistics are computed because Hypothyroidism is a constant
c No statistics are computed because Hypothyroidism is a constant.
d 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is,
d 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is, 15 .
e 3 cells $(75,0 \%)$ have expected count less than 5 . The minimum expected count is ,54.
f 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is 14 .
g 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 4,48
h 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 1,95
i 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 1,01 .

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	7,123	5	, 212
Tarone's	6,886		5

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	18,514	1	, 000
Mantel-Haenszel	16,539	1	, 000

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		, 147	
\ln (Estimate)		$-1,917$	
Std. Error of In(Estimate)		, 462	
Asymp. Sig. (2-sided)			, 000
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 059
Confidence Interval		Upper Bound	, 364
	In(Common Odds	Lower Bound	$-2,823$
	Ratio)	Upper Bound	$-1,011$

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.
*** Hypothyroidism ***

* stratified by age and sex and medication *

Crosstabs

Notes

Output Created Comments Input		12-MAR-2017 17:57:59
	Data	
		D: \begro\Documents\Artikel\2015\05
		KAZ-SD-RERF\Data\Analysis\nodoubl
		es(complete)\nodoubles(complete)v2.
		sav
	Filter	affected sett. (FILTER)
	Weight	<none>
	Split File	<none>

Missing Value Handling	N of Rows in Working Data File	715
	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.
Syntax		
		CROSSTABS /TABLES=exp2 BY Function2 BY agegrp BY sex BY medicine /FORMAT= AVALUE TABLES /STATISTIC=CHISQ CMH(1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL .
Resources	Elapsed Time	0:00:00,04
	Dimensions Requested	5
	Cells Available	69905

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Exposed * Hypothyroidism *age group *sex * Medication	168	$23,5 \%$	547	$76,5 \%$	715	$100,0 \%$

Exposed * Hypothyroidism * age group * sex * Medication Crosstabulation

Chi-Square Tests

Medication	sex	age group				Asymp. Sig. (2-sided)	Exact Sig. (2-sided)
yesExact Sig. (1-sided)							
	male	$45-54$	Pearson Chi-Square	(b)			

female	65-74	Pearson	.(c)
		Chi-Square	.(c)
		N of Valid Cases	5
	45-54	Pearson	
		Chi-Square	.(c)
		N of Valid	
		Cases	19
	55-64	Pearson	
		Chi-Square	.(c)
		N of Valid	
		Cases	24
	25-34	Pearson	
		Chi-Square	.(b)
		N of Valid	
		Cases	9
	35-44	Pearson	
		Chi-Square	.(b)
		N of Valid	
		Cases	4
	65-74	Pearson	
		Chi-Square	.(b)
		N of Valid	
		Cases	1

Computed only for a 2×2 tab

No statistics are computed because Exposed and Hypothyroidism are constants
No statistics are computed because Hypothyroidism is a constant
d 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is ,82.
e 3 cells $(75,0 \%)$ have expected count less than 5 . The minimum expected count is ,16.
f No statistics are computed because Exposed is a constant.

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)	
Breslow-Day	.		.	
Tarone's	.		.	.

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	7,363	1	, 007
Mantel-Haenszel	3,928	1	, 047

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		, 000
In(Estimate)		.
Std. Error of In(Estimate)		.
Asymp. Sig. (2-sided)	Common Odds Ratio	Lower Bound
Asymp. 95%		.

Confidence Interval		Upper Bound	
	$\operatorname{In}($ Common Odds Ratio)	Lower Bound Upper Bound	.

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.
*** Thyroid cancer ***

Frequencies

Statistics

				affected settlement	Exposed
V thyroid cancer	age group	sex	1061	1033	
	Valid	1055	1062	1060	1061
Mean	Missing	12	5	7	6
Median	, 04	5,47	1,78	, 67	, 44
Minimum	, 00	6,00	2,00	1,00	, 00
Maximum	0	1	1	0	0

Frequency Table

thyroid cancer

					Cumulative Percent
Valid	no	1015	95,1	96,2	96,2
	yes	40	3,7	3,8	100,0
	Total	1055	98,9	100,0	
Missing	System	12	1,1		
Total		1067	100,0		

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0-14	23	2,2	2,2	2,2
	15-24	8	,7	,8	2,9
	25-34	28	2,6	2,6	5,6
	35-44	85	8,0	8,0	13,6
	45-54	323	30,3	30,4	44,0
	55-64	442	41,4	41,6	85,6
	65-74	142	13,3	13,4	99,0
	75+	11	1,0	1,0	100,0
	Total	1062	99,5	100,0	
Missing	n.a.	5	,5		
Total		1067	100,0		

sex

					Cumulative Percent
Valid	male	233	21,8	22,0	22,0
	female	827	77,5	78,0	100,0
	Total	1060	99,3	100,0	
Missing	n.a.	7	, 7		
Total		1067	100,0		

affected settlement

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	not affected	346	32,4	32,6	32,6
	affected	715	67,0	67,4	100,0
	Total	1061	99,4	100,0	
Missing	not clear	6	,6		
Total		1067	100,0		

Exposed

					Cumulative Percent
Valid	no	577	54,1	55,9	55,9
	yes	456	42,7	44,1	100,0
	Total	1033	96,8	100,0	
Missing	not clear	34	3,2		
Total		1067	100,0		

*** Thyroid cancer ***
** simple crosstabulation **

Crosstabs

Notes		
Output Created		12-MAR-2017 17:58:03
Comments		
Input	Data	
		D:IbegrolDocuments\Artikell2015105 KAZ-SD-RERF\Data\Analysis\nodoub\| es(complete))nodoubles(complete)v2.
	Filter	<none>
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	1067
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table
Syntax		
		CROSSTABS /TABLES=agegrp sex affsett exp2 BY thycan /FORMAT= AVALUE TABLES /STATISTIC=CHISQ CMH(1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL .
Resources	Elapsed Time	0:00:00,05
	Dimensions Requested	2
	Cells Available	116508

Warnings

The Tests for Homogeneity of the Odds Ratio table and the Mantel-Haenszel Common Odds Ratio Estimate table are not computed for age group * thyroid cancer, because either (1) the group variable does not have exactly two distinct non-missing values or/and (2) the response variable does not have exactly two distinct non-missing values.

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N		Percent	N	Percent	N
age group * thyroid cancer	1050	$98,4 \%$	17	$1,6 \%$	1067	$100,0 \%$
sex * thyroid cancer	1048	$98,2 \%$	19	$1,8 \%$	1067	$100,0 \%$
affected settlement *	1049	$98,3 \%$	18	$1,7 \%$	1067	$100,0 \%$
thyroid cancer	1021	$95,7 \%$	46	$4,3 \%$	1067	$100,0 \%$
Exposed * thyroid cancer						

age group * thyroid cancer

			thyroid cancer		Total
			no	yes	
age group	0-14	Count	23	0	23
		Expected Count	22,1	,9	23,0
	15-24	Count	8	0	8
		Expected Count	7,7	,3	8,0
	25-34	Count	28	0	28
		Expected Count	26,9	1,1	28,0
	35-44	Count	81	4	85
		Expected Count	81,8	3,2	85,0
	45-54	Count	310	10	320
		Expected Count	307,8	12,2	320,0
	55-64	Count	421	13	434
		Expected Count	417,5	16,5	434,0
	65-74	Count	130	11	141
		Expected Count	135,6	5,4	141,0
	75+	Count	9	2	11
		Expected Count	10,6	,4	11,0
Total		Count	1010	40	1050
		Expected Count	1010,0	40,0	1050,0

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$16,050(a)$	7	, 025
Likelihood Ratio	14,125	7	, 049
Linear-by-Linear	6,044		1

a 5 cells $(31,3 \%)$ have expected count less than 5 . The minimum expected count is, 30 .
sex * thyroid cancer

Crosstab					
			thyroid cancer		Total
			no	yes	
sex	male	Count	227	4	231
		Expected Count	222,2	8,8	231,0
	female	Count	781	36	817
		Expected Count	785,8	31,2	817,0
Total		Count	1008	40	1048
		Expected Count	1008,0	40,0	1048,0

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	$3,510(b)$	1	, 061		
Continuity	2,819	1	, 093		
Correction(a)	4,152		1	, 042	
Likelihood Ratio					
Fisher's Exact Test	3,506		1	, 078	, 039
Linear-by-Linear	1048				
Association					
N of Valid Cases					

a Computed only for a 2×2 table
b 0 cells (,0\%) have expected count less than 5 . The minimum expected count is 8,82 .

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	, 000	0	
Tarone's	, 000		0

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	3,510	1	, 061
Mantel-Haenszel	2,816	1	, 093

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		2,616	
\ln (Estimate)		, 962	
Std. Error of In(Estimate)		, 532	
Asymp. Sig. (2-sided)			, 071
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 921
Confidence Interval		Upper Bound	7,427
	In(Common Odds	Lower Bound	,- 082
	Ratio)	Upper Bound	2,005

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.
affected settlement * thyroid cancer

Crosstab

			thyroid cancer		Total
			no	yes	
affected settlement	not affected	Count	324	16	340
		Expected Count	327,0	13,0	340,0
	affected	Count	685	24	709
Total		Expected Count	682,0	27,0	709,0
		Count	1009	40	1049
		Expected Count	1009,0	40,0	1049,0

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	$1,093(b)$	1	, 296		
Continuity	, 763	1	, 383		
Correction(a)	1,057		1	, 304	
Likelihood Ratio					
Fisher's Exact Test	1,092	1	, 296		, 190
Linear-by-Linear	1049				
Association					
N of Valid Cases					

a Computed only for a 2×2 table
b 0 cells (, 0%) have expected count less than 5 . The minimum expected count is 12,96 .

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	, 000	0	
Tarone's	, 000	0	.

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	1,093	1	, 296
Mantel-Haenszel	, 762	1	, 383

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		, 709	
\ln (Estimate)		,- 343	
Std. Error of In(Estimate)		, 330	
Asymp. Sig. (2-sided)		, 298	
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 372
Confidence Interval		Upper Bound	1,354
	In(Common Odds	Lower Bound	,- 989
	Ratio)	Upper Bound	, 303

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.

Exposed * thyroid cancer

Crosstab

			thyroid cancer		Total
			no	yes	
Exposed	no	Count	545	22	567
		Expected Count	545,3	21,7	567,0
	yes	Count	437	17	454
		Expected Count	436,7	17,3	454,0
Total		Count	982	39	1021
		Expected Count	982,0	39,0	1021,0

	Value	df	Asymp. Sig. $(2-s i d e d)$	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	, $013(\mathrm{~b})$	1	, 911		
Continuity	, 000	1	1,000		
Correction(a)	, 013		1	, 911	
Likelihood Ratio					
Fisher's Exact Test	, 013		1	, 911	
Linear-by-Linear	1021				
Association					
N of Valid Cases					

a Computed only for a 2×2 table
b 0 cells (,0\%) have expected count less than 5 . The minimum expected count is 17,34 .

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	, 000	0	
Tarone's	, 000	0	.

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	, 013	1	, 911
Mantel-Haenszel	, 003	1	, 959

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		, 964	
\ln (Estimate)		,- 037	
Std. Error of In(Estimate)		, 329	
Asymp. Sig. (2-sided)			, 911
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 505
Confidence Interval		Upper Bound	1,837
	In(Common Odds	Lower Bound	,- 682
	Ratio)	Upper Bound	, 608

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.
*** Thyroid cancer ***
** stratified by age or sex **

Crosstabs

Output Created Comments Input		12-MAR-2017 17:58:03
	Data	
		D:IbegrolDocuments\Artikel\2015\05 KAZ-SD-RERF\Data\Analysis\nodoubl es(complete)\nodoubles(complete)v2.
	Filter	<none>
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	1067
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.
Syntax		
		CROSSTABS /TABLES $=\exp 2 \mathrm{BY}$ thycan BY agegrp sex/FORMAT= AVALUE TABLES /STATISTIC=CHISQ CMH(1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL .
Resources	Elapsed Time	0:00:00,05
	Dimensions Requested	3
	Cells Available	95325

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N		Percent	N	Percent	N
Exposed * thyroid cancer * age group	1020	$95,6 \%$	47	$4,4 \%$	1067	$100,0 \%$
Exposed * thyroid cancer * sex	1018	$95,4 \%$	49	$4,6 \%$	1067	$100,0 \%$

Exposed * thyroid cancer * age group

Crosstab

age group			thyroid cancer		
			no	yes	Total
$0-14$	Exposed	no	Count	22	
		Expected	22		
		Count	22,0		22,0
	Total	Count	22		22
		Expected	22,0		22,0

Chi-Square Tests

age group		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
0-14	Pearson Chi-Square N of Valid Cases Pearson Chi-Square N of Valid Cases Pearson Chi-Square N of Valid Cases	. b$)$			1,000	
		(b)				
		22				
15-24		.(b)				
		.(b)				
		8				
25-34		.(b)				
		.(b)				
		27				
35-44	Pearson	,038(c)	1	,846		
	Chi-Square	,038(c)	1	,846		
	Continuity	,000	1	1,000		
	Correction(a)	,074	1	, 785		
	Fisher's Exact		1	,785		
	Test					,964
	Linear-by-Linear					
	Association	,038	1	,846		
	N of Valid Cases	83				
45-54	Pearson		1	,995		
	Chi-Square	,000(d)	1	,995		
	Continuity	,000	1	1,000		
	Correction(a)	,000	1	1,000		
	Likelihood Ratio	,000	1	,995		
	Fisher's Exact Test				1,000	,618
	Linear-by-Linear					
	Association	,000	1	,995		
	N of Valid Cases	311				
55-64	Pearson		1	228	,254	
	Chi-Square	1,452(e)	1	,228		
	Continuity	,837	1	,360		
	Correction(a)	,837	1	,360		
	Likelihood Ratio	1,403	1	,236		
	Fisher's Exact					
	Test					,179
	Linear-by-Linear					
	Association	1,449	1	,229		
	N of Valid Cases	425				
65-74	Pearson				,508	,295
	Chi-Square	,723(f)	1	,395		
	Continuity	, 268	1	,605		
	Correction(a)	,268	1	,605		
	Likelihood Ratio	,695	1	,404		
	Fisher's Exact					
	Test					
	Linear-by-Linear					
	Association	,718	1	,397		
	N of Valid Cases	133				
75+	Pearson		1	338		
	Chi-Square	,917(g)	1	,338		
	Continuity	, 006	1	936		
	Correction(a)	,006	1	,936		
	Likelihood Ratio	1,434	1	,231		

Fisher's Exact				
Test			1,000	,509
Linear-by-Linear	, 833	1	, 361	
Association	11			
N of Valid Cases				

Computed only for a 2×2 table
No statistics are computed because Exposed and thyroid cancer are constants
3 cells $(75,0 \%)$ have expected count less than 5 . The minimum expected count is 04 .
d 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 2,99 .
e 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 4,92
f 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 3,72 g 3 cells $(75,0 \%)$ have expected count less than 5 . The minimum expected count is ,55.

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	1,940	4	, 747
Tarone's	1,939		4

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	1,055	1	, 304
Mantel-Haenszel	, 710	1	, 399

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		, 698	
\ln (Estimate)		,- 359	
Std. Error of In(Estimate)		, 357	
Asymp. Sig. (2-sided)			, 314
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 347
Confidence Interval		Upper Bound	1,405
	In(Common Odds	Lower Bound	$-1,058$
	Ratio)	Upper Bound	, 340

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.

Exposed * thyroid cancer * sex

Crosstab

sex			thyroid cancer		
			no	yes	
male	Exposed no	Count	94	0	94

female		yes	Expected Count Count	92,7 127	1,3 3	94,0 130	
	Total		Expected Count Count	128,3 221	1,7 3	130,0 224	
				Expected Count Count	221,0 450	3,0 22	224,0 472
		yes	Expected Count Count	450,6 308	21,4 14	472,0 322	
			Expected Count Count	307,4 758	14,6 36	322,0 794	
	Total		Expected Count	758,0	36,0	794,0	

Chi-Square Tests

sex		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
male	Pearson				,266	,194
	Chi-Square	2,199(b)	1	,138		
	Continuity	,799	1	,371		
	Correction(a)	,79	1	,371		
	Likelihood	3,294	1	,070		
	Ratio					
	Fisher's Exact					
	Test					
	r Association	2,189	1	,139		
	N of Valid					
	Cases	224				
female	Pearson					
	Chi-Square	,043(c)	1	,835		
	Continuity	,001	1	,972		
	Correction(a)	,001	1	,972		
	Likelihood	,044	1	,835		
	Ratio					
	Fisher's Exact					
	Test					
	Linear-by-Linea r Association	,043	1	,835		
	N of Valid Cases	794				

Computed only for a 2×2 tab
b 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is 1,26 .
c 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 14,60 .

Tests of Homogeneity of the Odds Ratio

| | Chi-Squared | df | Asymp. Sig.
 (2-sided) |
| :--- | ---: | ---: | ---: | ---: |
| Breslow-Day | 2,220 | 1 | , 136 |
| Tarone's | 2,220 | 1 | , 136 |

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	, 048	1	, 826
Mantel-Haenszel	, 003	1	, 958

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the
number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		1,077	
In(Estimate)		, 074	
Std. Error of In(Estimate)		, 335	
Asymp. Sig. (2-sided)			
Asymp. 95\%		Lower Bound	, 824
Confidence Interval		Upper Bound	, 558
	In(Common Odds	Lower Bound	2,078
	Ratio)	,- 583	
		Upper Bound	, 731

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.
*** Thyroid cancer ***
** stratified by age and sex **

Crosstabs

Notes		
Output Created		12-MAR-2017 17:58:04
Comments		
Input	Data	
		D:\begro\Documents\Artikel\2015\05_
		KAZ-SD-RERF\Data\AnalysisInodoubl
		es(complete)\nodoubles(complete)v2.
		sav
	Filter	<none>
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	1067
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.

Syntax		CROSSTABS /TABLES $=\exp 2 \mathrm{BY}$ thycan BY agegrp BY sex /FORMAT= AVALUE TABLES /STATISTIC=CHISQ CMH(1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL .
Resources	Elapsed Time	0:00:03,25
	Dimensions Requested	4
	Cells Available	80659

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N		Percent	N	Percent	N
Exposed * thyroid cancer * age group * sex	1018	$95,4 \%$	49	$4,6 \%$	1067	$100,0 \%$

Exposed * thyroid cancer * age group * sex Crosstabulation

sex	age group				thyroid cancer		Total
					no	yes	
male	0-14	Exposed	no	Count	9		9
				Expected Count	9,0		9,0
		Total		Count	9		9
				Expected Count	9,0		9,0
	15-24	Exposed	no	Count	3		3
				Expected Count	3,0		3,0
		Total		Count	3		3
				Expected Count	3,0		3,0
	25-34	Exposed	no	Count	3		3
				Expected Count	3,0		3,0
		Total		Count	3		3
				Expected Count	3,0		3,0
	35-44	Exposed	no	Count	8		8
				Expected Count	8,0		8,0
		Total		Count	8		8
				Expected Count	8,0		8,0
	45-54	Exposed	no	Count	35		35
				Expected Count	35,0		35,0
			yes	Count	33		33
				Expected Count	33,0		33,0

			Expected Count Count	175,4 56	7,6 3	183,0 59
		yes	Expected Count	56,6	2,4	59,0
	Total		Count	232	10	242
			Expected Count	232,0	10,0	242,0
55-64	Exposed	no	Count	128	7	135
			Expected Count	129,6	5,4	135,0
		yes	Count	184	6	190
			Expected Count	182,4	7,6	190,0
	Total		Count	312	13	325
			Expected Count	312,0	13,0	325,0
65-74	Exposed	no	Count	32	5	37
			Expected Count	34,1	2,9	37,0
		yes	Count	62	3	65
			Expected Count	59,9	5,1	65,0
	Total		Count	94	8	102
			Expected Count	94,0	8,0	102,0
75+	Exposed	no	Count	1	0	1
			Expected Count	,8	,3	1,0
		yes	Count	5	2	7
			Expected Count	5,3	1,8	7,0
	Total		Count	6	2	8
			Expected Count	6,0	2,0	8,0

Chi-Square Tests

sex	age group		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig (1-sided)
male	0-14	Pearson	.(b)				
		Chi-Square					
		N of Valid Cases	9				
	15-24	Pearson	.(b)				
		Chi-Square					
		N of Valid	3				
	25-34	Pearson	.(b)				
		Chi-Square					
		N of Valid	3				
		Cases					
	35-44	Pearson	.(b)				
		Chi-Square					
		N of Valid	8				
		Cases					
	45-54	Pearson					
		Chi-Square					
		N of Valid	68				

Computed only for a 2×2 table
No statistics are computed because Exposed and thyroid cancer are constants.
No statistics are computed because thyroid cancer is a constant
d 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is ,77.
e 3 cells $(75,0 \%)$ have expected count less than 5 . The minimum expected count is ,04.
f 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 2,44
g 0 cells (,0\%) have expected count less than 5 . The minimum expected count is 5,40 .
h 1 cells $(25,0 \%$) have expected count less than 5 . The minimum expected count is 2,90
i 3 cells $(75,0 \%)$ have expected count less than 5 . The minimum expected count is, 25 .

Tests of Homogeneity of the Odds Ratio

| | Chi-Squared | df | Asymp. Sig.
 (2-sided) |
| :--- | ---: | ---: | ---: | ---: |
| Breslow-Day | 4,329 | 5 | , 503 |
| Tarone's | 4,328 | 5 | , 503 |

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	, 641	1	, 423
Mantel-Haenszel	, 374	1	, 541

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Estimate		, 752	
\ln (Estimate)		,- 286	
Std. Error of In(Estimate)		, 366	
Asymp. Sig. (2-sided)			, 435
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 367
Confidence Interval		Upper Bound	1,539
	In(Common Odds	Lower Bound	$-1,002$
	Ratio)	Upper Bound	, 431

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.
*** Thyroid cancer ***
** affected settlements only **
*** Thyroid cancer ***

* stratified by age and sex *

Crosstabs

Notes		
Output Created		12-MAR-2017 17:58:07
Comments		
Input	Data	
		D:Ibegro\Documents\Artikel\|2015\05 KAZ-SD-RERF\Data\AnalysisInodoubl es(complete)\nodoubles(complete)v2. sav
	Filter	affected sett. (FILTER)
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	715
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.
Syntax		
		CROSSTABS /TABLES=exp2 BY Function2 BY agegrp BY sex /FORMAT = AVALUE TABLES /STATISTIC=CHISQ CMH(1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL .
Resources	Elapsed Time	0:00:00,03
	Dimensions Requested	4
	Cells Available	80659

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Exposed * Hypothyroidism * age group *sex	691	$96,6 \%$		24	$3,4 \%$	715

Exposed * Hypothyroidism * age group * sex Crosstabulation

Chi-Square Tests

Computed only for a 2×2 table
No statistics are computed because Exposed and Hypothyroidism are constants.
No statistics are computed because Hypothyroidism is a constant.
2 cells ($50,0 \%$) have expected count less than 5 . The minimum expected count is ,15.
e 3 cells $(75,0 \%)$ have expected count less than 5 . The minimum expected count is ,54.
f 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is ,14.
g 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 4,48
h 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 1,95 .
i 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 1,01 .

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)	
Breslow-Day	7,123	5	, 212	
Tarone's	6,886		5	, 229

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	18,514	1	, 000
Mantel-Haenszel	16,539	1	, 000

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		, 147	
In(Estimate)		$-1,917$	
Std. Error of In(Estimate)		, 462	
Asymp. Sig. (2-sided)			, 000
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 059
Confidence Interval		Upper Bound	, 364
	In(Common Odds	Lower Bound	$-2,823$
	Ratio)	Upper Bound	$-1,011$

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.
*** Nodules ***

Frequencies

Notes		
Output Created		12-MAR-2017 17:58:07
Comments		
Input	Data	
		D: \begro\Documents\Artikel\2015\05 KAZ-SD-RERF\Data\AnalysisInodoubl es(complete)\nodoubles(complete)v2.
		sav
	Filter	<none>
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	1067
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics are based on all cases with valid data.
Syntax		
		FREQUENCIES VARIABLES=nodule agegrp sex affsett exp2 /STATISTICS=MINIMUM MAXIMUM MEAN MEDIAN /ORDER= ANALYSIS.
Resources	Elapsed Time	0:00:00,03

Total Values Allowed Statistics
\begin{tabular}{\|l
\hline
\end{tabular} |

Frequency Table

Thyroid nodule

					Cumulative Percent
Valid	no nodule	Frequency	Percent	Valid Percent	751
	nodule	304	28,4	71,2	71,2
	Total	1055	98,9	28,8	100,0
Missing	System	12	100,0		
Total		1067	100,0		

age group

					Cumulative Percent
Valid	$0-14$	Frequency	Percent	Valid Percent	2,2
	$15-24$	23	2,2	2,2	2,9
	$25-34$	28	, 7	2,6	5,6
	$35-44$	85	2,6	8,0	13,6
	$45-54$	323	30,3	30,4	44,0
	$55-64$	442	41,4	41,6	85,6
	$65-74$	142	13,3	13,4	99,0
	$75+$	11	1,0	1,0	100,0
	Total	1062	99,5	100,0	
Missing	n.a.	5	, 5		
Total		1067	100,0		

sex

| | | | | Cumulative
 Percent |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Valid male | 233 | 21,8 | 22,0 | 22,0 |

	female	827	77,5	78,0	100,0
	Total	1060	99,3	100,0	
Missing	n.a.	7	, 7		
Total		1067	100,0		

affected settlement

					Cumulative Percent
Valid	not	Frequency	Percent	Valid Percent	affected affected
	Total	346	32,4	32,6	100,0
Missing	not clear	1061	67,0	67,4	
Total		6	99,4	100,0	

Exposed

[^0]
Crosstabs

Notes		
Output Created		12-MAR-2017 17:58:07
Comments		
Input	Data	
		KAZ-SD-RERF\Data\Analysis\nodoubl es(complete)\nodoubles(complete)v2
		sav
	Filter	<none>
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	1067
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.

Syntax		Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table. CROSSTABS /TABLES=agegrp sex affsett exp2 BY nodule /FORMAT= AVALUE TABLES /STATISTIC=CHISQ CMH(1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL.
Resources	Elapsed Time	0:00:02,57
	Dimensions Requested Cells Available	$\begin{array}{r} 2 \\ 116508 \end{array}$

Warnings

The Tests for Homogeneity of the Odds Ratio table and the Mantel-Haenszel Common Odds Ratio Estimate table are not computed for age group * Thyroid nodule, because either (1) the group variable does not have exactly two distinct non-missing values or/and (2) the response variable does not have exactly two distinct non-missing values.

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
age group * Thyroid nodule	1050	98,4\%	17	1,6\%	1067	100,0\%
sex * Thyroid nodule	1048	98,2\%	19	1,8\%	1067	100,0\%
affected settlement * Thyroid nodule	1049	98,3\%	18	1,7\%	1067	100,0\%
Exposed * Thyroid nodule	1021	95,7\%	46	4,3\%	1067	100,0\%

age group * Thyroid nodule

Crosstab

			Thyroid nodule		
			no nodule	nodule	
age group	$0-14$	Count	22	1	23
		Expected	16,3	6,7	23,0
	Count	Count	8	0	8
	$15-24$	Expected	5,7	2,3	8,0
		Count	26	2	28
		Count	28,0		

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$36,059(a)$	7	, 000
Likelihood Ratio	42,443		7

a 2 cells $(12,5 \%)$ have expected count less than 5 . The minimum expected count is 2,32 .
sex * Thyroid nodule
Crosstab

			Thyroid nodule		Total
			no nodule	nodule	
sex	male	Count	191	40	231
		Expected Count	164,0	67,0	231,0
	female	Count	553	264	817
		Expected Count	580,0	237,0	817,0
Total		Count	744	304	1048
		Expected Count	744,0	304,0	1048,0

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	$19,669(b)$	1	, 000		
Continuity	18,947	1	, 000		

Correction(a)					
Likelihood Ratio	21,208	1	, 000		
Fisher's Exact Test					
Linear-by-Linear	19,650	1	, 000		
Association	1048				
N of Valid Cases					

a Computed only for a 2×2 table
b 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 67,01

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	, 000	0	
Tarone's	, 000	0	

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	19,669	1	, 000
Mantel-Haenszel	18,929	1	, 000

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		2,280	
\ln (Estimate)		, 824	
Std. Error of In(Estimate)		, 189	
Asymp. Sig. (2-sided)			, 000
Asymp. 95\%	Common Odds Ratio	Lower Bound	1,573
Confidence Interval		Upper Bound	3,304
	In(Common Odds	Lower Bound	, 453
	Ratio)	Upper Bound	1,195

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.
affected settlement * Thyroid nodule

Crosstab

			Thyroid nodule		
			no nodule	nodule	Total
affected		239	101	340	
settlement	not affected	Count	97,9	340,0	
		Expected Count	242,1	709	
	affected	Count	508	201	709,0

Total	Count	747	302	1049
	Expected Count	747,0	302,0	1049,0

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	, $206(b)$	1	, 650		
Continuity	, 145	1	, 703		
Correction(a)	, 205	1	, 650		
Likelihood Ratio					
Fisher's Exact Test	, 206	1	, 650		, 350
Linear-by-Linear	1049				
Association					
N of Valid Cases					

a Computed only for a 2×2 table
b 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 97,88 .

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	, 000	0	
Tarone's	, 000		0

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	, 206	1	, 650
Mantel-Haenszel	, 145	1	, 703

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		, 936	
\ln (Estimate)		,- 066	
Std. Error of In(Estimate)		, 145	
Asymp. Sig. (2-sided)			, 650
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 705
Confidence Interval		Upper Bound	1,244
	In(Common Odds	Lower Bound	,- 350
	Ratio)	Upper Bound	, 218

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.

Exposed * Thyroid nodule

Crosstab					
			Thyroid nodule		Total
			no nodule	nodule	
Exposed	no	Count	417	150	567
		Expected Count	404,3	162,7	567,0
	yes	Count	311	143	454
		Expected Count	323,7	130,3	454,0
Total		Count	728	293	1021
		Expected Count	728,0	293,0	1021,0

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	3,133(b)	1	,077		
Continuity	2,892	1	,089		
Correction(a)	2,892	1	,089		
Likelihood Ratio	3,124	1	,077		
Fisher's Exact Test				,082	,045
Linear-by-Linear Association	3,130	1	,077		
N of Valid Cases	1021				

b 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 130,29

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)	
Breslow-Day	, 000		0	
Tarone's	, 000		0	

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	3,133	1	, 077
Mantel-Haenszel	2,889	1	, 089

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the
number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate	1,278
$\ln ($ Estimate	, 246

Std. Error of In(Estimate)			, 139
Asymp. Sig. (2-sided)		, 077	
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 974
Confidence Interval		Upper Bound	1,678
	\ln (Common Odds	Lower Bound	,- 027
	Ratio)	Upper Bound	, 518

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.
*** Nodules ***
** stratified by age or sex **

Crosstabs

Case Processing Summary

Cases					
Valid		Missing		Total	
N	Percent	N	Percent	N	Percent

Exposed * Thyroid nodule * age group	1020	95,6\%	47	4,4\%	1067	100,0\%
Exposed * Thyroid nodule * sex	1018	95,4\%	49	4,6\%	1067	100,0\%

Exposed * Thyroid nodule * age group

Crosstab						
age group				Thyroid nodule		Total
				no nodule	nodule	
0-14	Exposed	no	Count	21	1	22
			Expected Count	21,0	1,0	22,0
	Total		Count	21	1	22
			Expected Count	21,0	1,0	22,0
15-24	Exposed	no	Count	8		8
			Expected Count	8,0		8,0
	Total		Count	8		8
			Expected Count	8,0		8,0
25-34	Exposed	no	Count	25	2	27
			Expected	25,0	2,0	27,0
	Total		Count	25	2	27
			Expected Count	25,0	2,0	27,0
35-44	Exposed	no	Count	67	15	82
			Expected Count	67,2	14,8	82,0
		yes	Count	1	0	1
			Expected	,8	,2	1,0
	Total		Count	68	15	83
			Expected Count	68,0	15,0	83,0
45-54	Exposed	no	Count	165	53	218
			Expected Count	163,3	54,7	218,0
		yes	Count	68	25	93
			Expected Count	69,7	23,3	93,0
	Total		Count	233	78	311
			Expected Count	233,0	78,0	311,0
55-64	Exposed	no	Count	102	59	161
			Expected Count	108,3	52,7	161,0
		yes	Count	184	80	264
			Expected Count	177,7	86,3	264,0
	Total		Count	286	139	425
			Expected Count	286,0	139,0	425,0

65-74	Exposed	no	Count	27	18	45
			Expected Count	27,4	17,6	45,0
		yes	Count	54	34	88
			Expected Count	53,6	34,4	88,0
	Total		Count	81	52	133
			Expected Count	81,0	52,0	133,0
75+	Exposed	no	Count	1	2	3
			Expected Count	1,4	1,6	3,0
		yes	Count	4	4	8
			Expected Count	3,6	4,4	8,0
	Total		Count	5	6	11
			Expected Count	5,0	6,0	11,0

Chi-Square Tests

age group		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
0-14	Pearson	(b)				
	Chi-Square	(b)				
	N of Valid Cases	22				
15-24	Pearson	.(c)				
	Chi-Square	.(c)				
	N of Valid Cases	8				
25-34	Pearson	.(b)				
	Chi-Square	.(b)				
	N of Valid Cases	27				
35-44	Pearson	,223(d)	1	,637		
	Chi-Square	,223(d)	1	,637		
	Continuity	,000	1	1,000		
	Correction(a)		1	1,000		
	Likelihood Ratio	,401	1	,526		
	Fisher's Exact Test				1,000	,819
	Linear-by-Linear					
	Association	,221	1	,639		
	N of Valid Cases	83				
45-54	Pearson	,229(e)	1	,632		
	Chi-Square	,229(e)	1	,632		
	Continuity	,113	1	,737		
	Correction(a)	, 113	1	,737		
	Likelihood Ratio	,227	1	,634		
	Fisher's Exact				,669	,365
	Test				, 66	
	Linear-by-Linear	, 228	1	,633		
	Association		1	,633		
	N of Valid Cases	311				
55-64	Pearson					
	Chi-Square	1,828(f)	1	,176		
	Continuity	1,551	1	,213		
	Correction(a)	1,551	1	,213		
	Likelihood Ratio	1,816	1	,178		
	Fisher's Exact Test				,201	,107

Computed only for a 2×2 table
No statistics are computed because Exposed is a constant
No statistics are computed because Exposed and Thyroid nodule are constants
d 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is, 18 .
e 0 cells (, 0%) have expected count less than 5 . The minimum expected count is 23,32 .
f 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 52,66
g 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 17,59 .
h 4 cells $(100,0 \%)$ have expected count less than 5 . The minimum expected count is 1,36 .

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	1,821	4	, 769
Tarone's	1,820		4

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	, 751	1	, 386
Mantel-Haenszel	, 620	1	, 431

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate	,876
\ln (Estimate)	,- 132
Std. Error of \ln (Estimate)	, 154

Asymp. Sig. (2-sided)			, 389
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 648
Confidence Interval		Upper Bound	1,184
	In(Common Odds	Lower Bound	,- 433
	Ratio)	Upper Bound	, 169

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.

Exposed * Thyroid nodule * sex

Crosstab

sex				Thyroid nodule		Total
				no nodule	nodule	
male	Exposed	no	Count	76	18	94
			Expected Count	77,6	16,4	94,0
		yes	Count	109	21	130
			Expected Count	107,4	22,6	130,0
	Total		Count	185	39	224
			Expected Count	185,0	39,0	224,0
female	Exposed	no	Count	340	132	472
			Expected Count	321,0	151,0	472,0
		yes	Count	200	122	322
			Expected Count	219,0	103,0	322,0
	Total		Count	540	254	794
			Expected Count	540,0	254,0	794,0

Chi-Square Tests

sex		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
male	Pearson	,340(b)	1	,560	, 595	$\begin{array}{r} \\ \hline, 341\end{array}$
	Chi-Square		1	,560		
	Continuity	,164	1	,686		
	Correction(a)					
	Likelihood Ratio	,338	1	,561		
	Fisher's Exact					
	Test					
	Linear-by-Linea					
	r Association	,339	1	,561		
	N of Valid					
	Cases	224				
female	Pearson					
	Chi-Square	8,662(c)	1	,003		
	Continuity	8,212	1	,004		
	Correction(a)					
	Likelihood	8,600	1	,003		
	Ratio	8,600	1	,003		

Fisher's Exact Test Linear-by-Linea r Association N of Valid Cases	$8,651$ 794	1	,003	,004	,002

[^1]b 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 16,37 .
c 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 103,01

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	2,941	1	, 086
Tarone's	2,940	1	, 086

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	6,089	1	, 014
Mantel-Haenszel	5,733	1	, 017

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		1,413	
\ln (Estimate)		, 346	
Std. Error of In(Estimate)		, 141	
Asymp. Sig. (2-sided)		, 014	
Asymp. 95\%	Common Odds Ratio	Lower Bound	1,072
Confidence Interval		Upper Bound	1,864
	In(Common Odds	Lower Bound	, 069
	Ratio)	Upper Bound	, 623

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.
*** Nodules ***
** stratified by age and sex **

Crosstabs

Notes

Output Created Comments	12-MAR-2017 17:58:09

Input	Data	D: IbegrolDocuments\Artikel\2015\05 KAZ-SD-RERF\Data\AnalysisInodoubl es(complete)\nodoubles(complete)v2. sav
	Filter	<none>
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	1067
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.
Syntax		
		CROSSTABS /TABLES=exp2 BY nodule BY agegrp BY sex /FORMAT= AVALUE TABLES /STATISTIC=CHISQ CMH(1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL .
Resources	Elapsed Time	0:00:03,29
	Dimensions Requested	4
	Cells Available	80659

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N		Percent	N	Percent	N
	1018	$95,4 \%$	49	$4,6 \%$	1067	$100,0 \%$

Exposed * Thyroid nodule * age group * sex Crosstabulation

sex	age group				Thyroid nodule		Total
					no nodule	nodule	
male	0-14	Exposed	no	Count	9		9
				Expected Count	9,0		9,0
		Total		Count	9		9
				Expected Count	9,0		9,0
	15-24	Exposed	no	Count	3		3
				Expected Count	3,0		3,0
		Total		Count	3		3
				Expected Count	3,0		3,0
	25-34	Exposed	no	Count	3		3

25-34	Exposed	no	Count Count	22	2	24
			Expected Count	22,0	2,0	24,0
	Total		Count	22	2	24
			Expected	22,0	2,0	24,0
35-44	Exposed	no	Count	61	13	74
			Expected Count	61,2	12,8	74,0
		yes	Count	1	0	1
			Expected Count	,8	,2	1,0
	Total		Count	62	13	75
			Expected	62,0	13,0	75,0
45-54	Exposed	no	Count	137	46	183
			Expected Count	133,1	49,9	183,0
		yes	Count	39	20	59
			Expected Count	42,9	16,1	59,0
	Total		Count	176	66	242
			Expected	176,0	66,0	242,0
55-64	Exposed	no	Count	82	53	135
			Expected Count	84,3	50,7	135,0
		yes	Count	121	69	190
			Expected Count	118,7	71,3	190,0
	Total		Count	203	122	325
			Expected Count	203,0	122,0	325,0
65-74	Exposed	no	Count	20	17	37
			Expected Count	20,0	17,0	37,0
		yes	Count	35	30	65
			Expected	35,0	30,0	65,0
	Total		Count	55	47	102
			Expected Count	55,0	47,0	102,0
75+	Exposed	no	Count	1	0	1
			Expected Count	,6	,4	1,0
		yes	Count	4	3	7
			Expected Count	4,4	2,6	7,0
	Total		Count	5	3	8
			Expected Count	5,0	3,0	8,0

Chi-Square Tests

sex	age group		Value	df	Asymp. Sig. $(2-$ sided $)$	Exact Sig. (2-sided)	Exact Sig. (1-sided)

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	4,161	7	, 761
Tarone's	4,161	7	, 761

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	, 001	1	, 971
Mantel-Haenszel	, 002	1	, 966

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		, 994	
In(Estimate)		,- 006	
Std. Error of In(Estimate)		, 158	
Asymp. Sig. (2-sided)			, 971
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 730
Confidence Interval		Upper Bound	1,354
	In(Common Odds	Lower Bound	,- 315
	Ratio)	Upper Bound	, 303

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.
*** Nodules ***
** affected settlements only **
*** Nodules ***

* stratified by age and sex *

Crosstabs

Notes		
Output Created		12-MAR-2017 17:58:13
Comments		
Input	Data	
		D: Ibegro\Documents\Artikel\2015\05 KAZ-SD-RERF\Data\AnalysisInodoubl es(complete)\nodoubles(complete)v2. sav
	Filter	affected sett. (FILTER)
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	715
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.
Syntax		
		CROSSTABS /TABLES=exp2 BY nodule BY agegrp BY sex /FORMAT= AVALUE TABLES /STATISTIC=CHISQ CMH(1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL
Resources	Elapsed Time	0:00:00,04
	Dimensions Requested	4
	Cells Available	80659

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N		Percent	N	Percent	N
	685	$95,8 \%$	30	$4,2 \%$	715	$100,0 \%$

Exposed * Thyroid nodule * age group * sex Crosstabulation

	age group			Thyroid nodule		
sex				no nodule	nodule	Total
male	$25-34$	Exposed	no	Count	3	
			Expected	3,0	3,0	
			Count	3	3	
		Total		Count		3,0

										$\begin{aligned} & \overrightarrow{\mathrm{D}} \\ & \frac{1}{3} \\ & \frac{\mathrm{D}}{\bar{D}} \end{aligned}$																										
						¢ $\stackrel{1}{+}$ +				N 0 ω +				N +						O i －						¢ ¢ $\stackrel{1}{4}$						¢ H +				
			$\begin{aligned} & \text { - } \\ & \underline{0} \end{aligned}$	$\stackrel{-1}{0}$				$\begin{aligned} & \text { - } \\ & \underline{\stackrel{1}{0}} \end{aligned}$				$\begin{aligned} & \text { - } \\ & \underline{\stackrel{1}{0}} \end{aligned}$				$\begin{aligned} & \text { 굴 } \\ & \underline{\stackrel{1}{2}} \end{aligned}$				$\begin{aligned} & \text { m } \\ & \text { X } \\ & \text { O} \\ & \text { D } \\ & \text { D } \end{aligned}$		$\begin{aligned} & \text { 구 } \\ & \underline{\stackrel{\rightharpoonup}{0}} \end{aligned}$				$\begin{aligned} & \text { m } \\ & \stackrel{\text { x }}{0} \\ & \text { © } \\ & \text { D } \end{aligned}$		$\xrightarrow{-1}$				$\begin{aligned} & \text { س } \\ & \stackrel{x}{O} \\ & 0 \\ & \stackrel{\sim}{2} \end{aligned}$		$\stackrel{-1}{\stackrel{+}{+}}$		
	¢	ठ		§		ठ				ठ				¢				§		ठ				§		ठ				¢		Ј				ठ
$\begin{aligned} & \text { س } \\ & \stackrel{x}{0} \\ & \underset{D}{D} \\ & \stackrel{\rightharpoonup}{D} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$						$\begin{aligned} & \text { O} \\ & \vdots \\ & \vdots \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & \end{aligned}$				$$						$\begin{aligned} & 0 \\ & \stackrel{O}{3} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$						$\begin{aligned} & 0 \\ & \stackrel{O}{3} \\ & \stackrel{C}{2} \end{aligned}$				$\stackrel{\cap}{\stackrel{\circ}{3}}$		$\begin{aligned} & 0 \\ & 0 \\ & \frac{1}{7} \end{aligned}$		$\begin{array}{ll} n \\ k & 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\stackrel{\circ}{-1}$		？
$\begin{aligned} & A \\ & \dot{\theta} \\ & \dot{\theta} \end{aligned}$	$$	8	$\begin{array}{ll} \omega \\ \infty \\ 0 & \omega \\ 0 & \infty \end{array}$	ω_{∞}－	$\underset{\sim}{\omega}$	${ }_{\sim}^{\omega}$	$\stackrel{\rightharpoonup}{v}$	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\rightharpoonup}{*}$					$\stackrel{N}{ \pm}$	N	$\stackrel{\rightharpoonup}{\bullet}$	$\stackrel{\rightharpoonup}{\bullet}$	$\stackrel{\rightharpoonup}{\omega}$		$\begin{aligned} & \text { N } \\ & \hline 0 \end{aligned}$	N	$\stackrel{9}{\infty}$	ก	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \text { N } \end{aligned}$	$\stackrel{\rightharpoonup}{\circ}$	$\begin{gathered} \stackrel{\rightharpoonup}{\omega} \\ 0 \end{gathered}$	$\stackrel{\rightharpoonup}{\omega}$	$\begin{aligned} & N \\ & \infty \\ & \hline \end{aligned}$	N	$\begin{aligned} & \stackrel{\rightharpoonup}{\square} \\ & \stackrel{0}{6} \end{aligned}$	$\overrightarrow{0}$		ω	$\stackrel{\omega}{0}$	ω
$\stackrel{\rightharpoonup}{\Delta}$	$\begin{array}{cc} & \begin{array}{c} N \\ \omega \\ \infty \end{array} \\ \hline \end{array}$	N	$\bigcirc 0$	の \triangle	0	の	No	N	No		$\stackrel{\rightharpoonup}{0}$		$\stackrel{\rightharpoonup}{0}$	\rightarrow	\pm	\pm	$\underset{\omega}{\omega}$	－	v	\bigcirc	$\begin{gathered} \vec{\omega} \\ 0 \end{gathered}$	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{N}}$	د	$\stackrel{\rightharpoonup}{\infty}$		vo	ν	$\stackrel{\rightharpoonup}{6}$	Or	$\xrightarrow{\sim}$	N				
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\text { g } \stackrel{\infty}{N}$	$\stackrel{\infty}{\sim}$	$\stackrel{A}{ \pm} \stackrel{+}{+}$	$\stackrel{\rightharpoonup}{0}$		$\stackrel{\rightharpoonup}{\omega}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{\bullet}$	$\begin{aligned} & \overrightarrow{0} \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{\bullet}$	$\stackrel{\rightharpoonup}{0}$		$\stackrel{\rightharpoonup}{0}$		$\begin{aligned} & N \\ & 0 \\ & 0 \end{aligned}$	N	$\begin{gathered} N \\ 0 \\ 0 \end{gathered}$	N	0		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\circ}{\circ}$	$\begin{gathered} \text { N } \\ 0 \end{gathered}$	ట	$\stackrel{\rightharpoonup}{N}$		$\begin{aligned} & \text { go } \\ & 0 \end{aligned}$	g	$\underset{\sim}{\omega}$	ω	－	$\stackrel{\rightharpoonup}{\nu}$	${ }_{0}^{0}$	ω	$\stackrel{\omega}{0}$	ω

55-64	Total		Count			
			Count	99	40	139
			Expected			
			Count	99,0	40,0	139,0
	Exposed	no	Count	29	14	43
			Expected	27,8	15,2	43,0
			Count	27,8	15,2	43,0
		yes	Count	119	67	186
			Expected	120,2	65,8	186,0
			Count	120,2	65,8	186,0
	Total		Count	148	81	229
			Expected	148,0	81,0	229,0
			Count	148,0	81,0	229,0
65-74	Exposed	no	Count	7	4	11
			Expected	6,0	5,0	11,0
			Count	6,0	5,0	11,0
		yes	Count	34	30	64
			Expected	35,0	29,0	64,0
			Count	35,0	29,0	
	Total		Count	41	34	75
			Expected Count	41,0	34,0	75,0
75+	Exposed	yes	Count	4	3	7
			Expected Count	4,0	3,0	7,0
	Total		Count	4	3	7
			Expected Count	4,0	3,0	7,0
15-24	Exposed	no	Count	2		2
			Expected Count	2,0		2,0
	Total		Count	2		2
			Expected	2,0		2,0

Chi-Square Tests

Computed only for a 2×2 table
No statistics are computed because Exposed and Thyroid nodule are constants
c 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is 2,38
d 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 1,84
e 3 cells $(75,0 \%)$ have expected count less than 5 . The minimum expected count is, 71 .
f No statistics are computed because Exposed is a constant
g 2 cells ($50,0 \%$) have expected count less than 5 . The minimum expected count is ,14.
h 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 16,40
i 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 15,21 .
j 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 4,99 .

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	1,332	6	, 970
Tarone's	1,332	6	, 970

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	1,026	1	, 311
Mantel-Haenszel	, 807	1	, 369

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Estimate		1,255	
\ln (Estimate)		, 227	
Std. Error of In(Estimate)		, 224	
Asymp. Sig. (2-sided)			, 311
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 808
Confidence Interval		Upper Bound	1,949
	In(Common Odds	Lower Bound	,- 213
	Ratio)	Upper Bound	, 667

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.
*** Nodules ***
** excluding all subjects with thyroid cancer **
*** Nodules ***

* stratified by age and sex *

Crosstabs

Notes		
Output Created Comments Input		12-MAR-2017 17:58:13
	Data	
		D: \begro\Documents\Artikel\2015\05 KAZ-SD-RERF\Data\Analysislnodoubl es(complete)\nodoubles(complete)v2.
		sav
	Filter	no thyroid cancer (FILTER)
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	1015
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.
Syntax		
		CROSSTABS /TABLES=exp2 BY nodule BY agegrp BY sex /FORMAT = AVALUE TABLES /STATISTIC=CHISQ CMH(1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL .
Resources	Elapsed Time	0:00:00,05
	Dimensions Requested	4
	Cells Available	80659

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N		Percent	N	Percent	N
	979	$96,5 \%$	36	$3,5 \%$	1015	$100,0 \%$

Exposed * Thyroid nodule * age group * sex Crosstabulation

sex	age group				Thyroid nodule		Total
					no nodule	nodule	
male	0-14	Exposed	no	Count	9		9
				Expected Count	9,0		9,0
		Total		Count	9		9
				Expected Count	9,0		9,0
	15-24	Exposed	no	Count	3		3
				Expected Count	3,0		3,0
		Total		Count	3		3
				Expected Count	3,0		3,0
	25-34	Exposed	no	Count	3		3
				Expected Count	3,0		3,0
		Total		Count	3		3
				Expected Count	3,0		3,0
	35-44	Exposed	no	Count	6	2	8
				Expected Count	6,0	2,0	8,0
		Total		Count	6	2	8
				Expected	6,0	2,0	8,0
	45-54	Exposed	no	Count	68 28	2,0 7	8,0 35
				Expected Count	28,8	6,2	35,0
			yes	Count	28	5	33
				Expected Count	27,2	5,8	33,0
		Total		Count	56	12	68
				Expected	56,0	12,0	68,0
	55-64	Exposed	no	Count	20	6	26
				Expected Count	21,5	4,5	26,0
			yes	Count	62	11	73
				Expected Count	60,5	12,5	73,0
		Total		Count	82	17	99
				Expected Count	82,0	17,0	99,0
	65-74	Exposed	no	Count	7	1	8
				Expected	6,9	1,1	8,0

female	75+		yes	Count Count	17	3	20
		Total		Expected Count Count	17,1	2,9 4	20,0 28
		Exposed	no	Expected Count Count	24,0	4,0 2	28,0 2
			yes	Expected Count Count		2,0 1	2,0 1
		Total		Expected Count Count		1,0 3	1,0 3
	0-14	Exposed	no	Expected Count Count	12	3,0 1	3,0 13
				Expected Count	12,0	1,0	13,0
		Total	no	Count	12	1	13
				Expected Count Count	12,0	1,0	13,0
	15-24	Exposed		Count	5		5
				Expected Count	5,0		5,0
		Total		Count	5		5
			no	Expected Count	5,0		5,0
	25-34	Exposed		Count	22	2	24
				Expected Count	22,0	2,0	24,0
		Total	no	Count	22	2	24
		Exposed		Expected Count	22,0	2,0	24,0
	35-44			Count	58	13	71
			yes	Expected Count	58,2	12,8	71,0
				Count	1	0	1
		Total		Expected Count	,8	,2	1,0
			no	Count	59	13	72
				Expected Count	59,0	13,0	72,0
	45-54	Exposed		Count	132	44	176
				Expected Count	128,2	47,8	176,0
			yes	Count	37	19	56
		TotalExposed		Expected Count	40,8	15,2	56,0
				Count	169	63	232
				Expected Count	169,0	63,0	232,0
	55-64		no	Count	76	52	128
				Expected Count Count	78,8 116	49,2	128,0
			yes	Count	116	68	184
				Expected Count	113,2	70,8	184,0

Chi-Square Tests

sex	age group		Value	df	Asymp. Sig. (2-sided)	$\begin{gathered} \text { Exact Sig. } \\ \text { (2-sided) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Exact Sig. } \\ \text { (1-sided) } \\ \hline \end{gathered}$
male	0-14						
		Pearson Chi-Square	(b)				
		N of Valid	9				
	15-24	Pearson					
		Chi-Square	(b)				
		N of Valid	3				
		Cases					
	25-34	Pearson	(b)				
		N of Valid					
		Cases	3				
	35-44	Pearson					
		Chi-Square	(c)				
		N of Valid	8				
	45-54	Cases					
		Chi-Square	,275(d)	1	,600		
		Continuity	. 042	1	. 837		
		Correction(a)					
		Likelihood Ratio	,276	1	,599		
		Fisher's Exact					
		Test				,753	,420
		Linear-by-Line	,271	1	,603		
		ar Association N of Valid	, 68				
			68				
	55-64	Pearson	864(e)	1	352		
		Chi-Square	,864(e)				
		Continuity	,393	1	,531		
		Correction(a)					
		Likelihood	,823	1	,364		

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	4,224	7	, 754
Tarone's	4,224		7

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	, 110	1	, 740
Mantel-Haenszel	, 062	1	, 803

number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		, 948	
\ln (Estimate)		,- 053	
Std. Error of In(Estimate)		, 161	
Asymp. Sig. (2-sided)			, 743
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 692
Confidence Interval		Upper Bound	1,301
	In(Common Odds	Lower Bound	,- 369
	Ratio)	Upper Bound	, 263

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.
*** Nodules ***

* affected settlements only *
*** Nodules ***
* stratified by age and sex *

Crosstabs

Notes		
Output Created		12-MAR-2017 17:58:13
Comments		
Input	Data	
		D: Ibegro\Documents\Artikel\|2015\05 KAZ-SD-RERF\Data\Analysis\nodoubl es(complete)\nodoubles(complete)v2.
		sav
	Filter	no thycan affsett (FILTER)
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	685
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.
Syntax		
		CROSSTABS /TABLES=exp2 BY nodule BY agegrp BY sex /FORMAT= AVALUE TABLES /STATISTIC=CHISQ CMH(1)
		/CELLS= COUNT EXPECTED /COUNT ROUND CELL .
Resources	Elapsed Time	0:00:03,92

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Exposed * Thyroid nodule * age group * sex	661	$96,5 \%$		24	$3,5 \%$	685

Exposed * Thyroid nodule * age group * sex Crosstabulation

Chi-Square Tests

sex	age group		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
male	25-34	Pearson					
	25-34	Chi-Square	.(b)				
		N of Valid	3				
	35-44	Pearson					
		Chi-Square	(b)				
		N of Valid	3				
		Cases					
	45-54	Pearson Chi-Square	,107(c)	1	,744		
		Continuity	,000	1	1,000		
		Correction(a)	,000	1	1,000		
		Likelihood	,110	1	,741		
		Fisher's Exact					
		Test				1,000	,554
		Linear-by-Line	, 105	1	,746		
		ar Association	,105	1	,746		
		N of Valid	50				
		Cases	50				
	55-64	Pearson					
		Chi-Square	,020(d)	1	,887		
		Continuity	,000	1	1,000		
		Correction(a)	,000		1,000		
		Likelihood	,020	1	,888		
		Ratio					
		Fisher's Exact Test				1,000	,585
		Linear-by-Line		1			
		ar Association	,020	1	,887		
		N of Valid	85				
		Cases	85				
	65-74	Pearson					
		Chi-Square	,852(e)	1	,356		
		Continuity		1			
		Correction(a)	,024	1	,878		
		Likelihood	1,438	1	,230		
		Ratio	1,438	1	,230		
		Fisher's Exact				1,000	,496
		Test				1,000	,496
		Linear-by-Line	,818	1	,366		
		ar Association	,818		,366		
		N of Valid	25				
		Cases	25				
	75+	Pearson					
		Chi-Square	.(b)				
		N of Valid					
		Cases	1				
female	25-34	Pearson					
		Chi-Square	.(f)				
		N of Valid	19				
		Cases	19				
	35-44	Pearson		1	684		
		Chi-Square	,166(g)	1	,684		

Computed only for a 2×2 table
No statistics are computed because Exposed and Thyroid nodule are constants.
c 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is 2,38
d 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 1,84
e 3 cells $(75,0 \%)$ have expected count less than 5 . The minimum expected count is ,60 f No statistics are computed because Exposed is a constant
g 2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is ,14.
h 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 15,60 .
i 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 14,55 .

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	1,132	6	, 980
Tarone's	1,132	6	, 980

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	, 461	1	, 497
Mantel-Haenszel	, 317	1	, 573

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		1,168	
\ln (Estimate)		, 156	
Std. Error of In(Estimate)		, 229	
Asymp. Sig. (2-sided)			, 497
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 746
Confidence Interval		Upper Bound	1,831
	In(Common Odds	Lower Bound	,- 293
	Ratio)	Upper Bound	, 605

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.
*** Nodules, males only ***
*** Nodules, males only ***
** stratified by age **

Crosstabs

Notes

	Split File	<none>
	N of Rows in Working Data File	233
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics for each table are based on all the cases with valid data in the specified range(s) for all variables in each table.
Syntax		CROSSTABS /TABLES=exp2 BY nodule BY agegrp/FORMAT= AVALUE TABLES /STATISTIC=CHISQ CMH(1) /CELLS= COUNT EXPECTED /COUNT ROUND CELL
Resources	Elapsed Time	0:00:00,02
	Dimensions Requested	3
	Cells Available	95325

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N		Percent	N	Percent	N
Exposed * Thyroid nodule * age group	224	$96,1 \%$		9	$3,9 \%$	233

Exposed * Thyroid nodule * age group Crosstabulation

45-54	Total Exposed	no	Count Expected Count Count	6 6,0 28	2 2,0 7	8 8,0 35
		yes	Expected Count Count	28,8 28	6,2 5	35,0 33
			Expected Count	27,2	5,8	33,0
	Total		Count	56	12	68
			Expected Count	56,0	12,0	68,0
55-64	Exposed	no	Count	20	6	26
			Expected Count	21,5	4,5	26,0
		yes	Count	62	11	73
			Expected Count	60,5	12,5	73,0
	Total		Count	82	17	99
			Expected Count	82,0	17,0	99,0
65-74	Exposed	no	Count	7	1	8
			Expected Count	6,7	1,3	8,0
		yes	Count	19	4	23
			Expected Count	19,3	3,7	23,0
	Total		Count	26	5	31
			Expected Count	26,0	5,0	31,0
75+	Exposed	no	Count		2	2
			Expected Count		2,0	2,0
		yes	Count		1	1
			Expected Count		1,0	1,0
	Total		Count		3	3
			Expected Count		3,0	3,0

Chi-Square Tests

a Computed only for a 2×2 table
b No statistics are computed because Exposed and Thyroid nodule are constants.
No statistics are computed because Exposed is a constant
d 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 5,82
e 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 4,46
f 2 cells $(50,0 \%$) have expected count less than 5 . The minimum expected count is 1,29
g No statistics are computed because Thyroid nodule is a constant

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	, 484	2	, 785
Tarone's	, 484	2	, 785

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	, 713	1	, 398
Mantel-Haenszel	, 404	1	, 525

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Estimate		, 715	
\ln (Estimate)		,- 336	
Std. Error of In(Estimate)		, 399	
Asymp. Sig. (2-sided)			, 400
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 327
Confidence Interval		Upper Bound	1,562
	In(Common Odds	Lower Bound	$-1,118$
	Ratio)	Upper Bound	, 446

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.
*** Nodules, males only ***
** Affected settlements only **
*** Nodules, males only ***
** stratified by age **

Crosstabs

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N		Percent	N	Percent	N
Exposed * Thyroid nodule * age group	170	$96,0 \%$		7	$4,0 \%$	177

Exposed * Thyroid nodule * age group Crosstabulation

Chi-Square Tests

age group		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
25-34	Pearson					
	Chi-Square	.(b)				
	N of Valid Cases	3				
35-44	Pearson	(b)				
	Chi-Square	(b)				
	N of Valid Cases	3				
45-54	Pearson	,107(c)	1	,744		
	Chi-Square	,107(c)	1	,744		
	Continuity	,000	1	1,000		
	Correction(a)	,000	1	1,000		
	Likelihood Ratio	,110	1	,741		
	Fisher's Exact Test				1,000	,554
	Linear-by-Linear					
	Association	,105	1	,746		
	N of Valid Cases	50				
55-64	Pearson	,020(d)	1	,887		
	Chi-Square	,020(d)	1	,887		
	Continuity	,000	1	1,000		
	Correction(a)					
	Likelihood Ratio	,020	1	,888		
	Fisher's Exact Test				1,000	,585
	Linear-by-Linear					
	Association	,020	1	,887		
	N of Valid Cases	85				
65-74	Pearson					
	Chi-Square	1,014(e)	1	,314		
	Continuity					
	Correction(a)	,091	1	,763		
	Likelihood Ratio	1,713	1	,191		
	Fisher's Exact Test				1,000	,432
	Linear-by-Linear					
	Association	,978	1	,323		
	N of Valid Cases	28				
75+	Pearson					
	Chi-Square	.(b)				
	N of Valid Cases	1				

Computed only for a 2×2 table
No statistics are computed because Exposed and Thyroid nodule are constants
2 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is 2,38
d 1 cells $(25,0 \%)$ have expected count less than 5 . The minimum expected count is 1,84
e 3 cells $(75,0 \%)$ have expected count less than 5 . The minimum expected count is ,71.

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	1,018		2

Tarone's	1,018	2	, 601

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	, 271	1	, 603
Mantel-Haenszel	, 057	1	, 812

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		1,360	
\ln (Estimate)		, 308	
Std. Error of In(Estimate)		, 596	
Asymp. Sig. (2-sided)			, 605
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 423
Confidence Interval		Upper Bound	4,373
	In(Common Odds	Lower Bound	,- 860
	Ratio)	Upper Bound	1,475

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.
*** Nodules, males only ***
** Affected settlements only, no thycan **
*** Nodules, males only ***
** stratified by age **

Crosstabs

Notes		
Output Created		12-MAR-2017 17:58:20
Comments		
Input	Data	
		D: \begro\Documents\Artikel\2015\05 KAZ-SD-RERF\Data\Analysis\nodoubl es(complete)\nodoubles(complete)v2.
		sav
	Filter	males no thycan affsett (FILTER)
	Weight	<none>
	Split File	<none>
	N of Rows in Working Data File	172
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.

$\left.\begin{array}{|l|l|} & \text { Cases Used } \\ \text { Syntax } & \begin{array}{r}\text { Statistics for each table are based on } \\ \text { all the cases with valid data in the } \\ \text { specified range(s) for all variables in } \\ \text { each table. }\end{array} \\ \text { Resources } & \begin{array}{r}\text { CROSSTABS /TABLES } \\ \text { nodule } \\ \text { BY agegrp /FORMAT }\end{array} \\ \text { AVALUE TABLES }\end{array}\right\}$

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Exposed * Thyroid nodule * age group	167	97,1\%	5	2,9\%	172	100,0\%

Exposed * Thyroid nodule * age group Crosstabulation

65-74	Total		Count	72	13	85
	Exposed	no	Expected Count Count	72,0 5	13,0 0	85,0
		yes	Expected Count Count	4,4 17	,6	5,0 20
	Total		Expected Count Count	17,6 22	2,4 3	20,0 25
	Exposed	yes	Expected Count Count	22,0	3,0 1	25,0 1
75+	Total		Expected Count Count		1,0 1	1,0 1
			Expected Count		1,0	1,0

Chi-Square Tests

age group		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
25-34	Pearson					
	Chi-Square	.(b)				
	N of Valid Cases	3				
35-44	Pearson	.(b)				
	Chi-Square	.(b)				
	N of Valid Cases	3				
45-54	Pearson	,107(c)	1	,744		
	Chi-Square	,107(c)	1	,744		
	Continuity	,000	1	1,000		
	Correction(a)		1			
	Likelihood Ratio	,110	1	,741		
	Fisher's Exact Test				1,000	,554
	Linear-by-Linear					
	Association	,105	1	746		
	N of Valid Cases	50				
55-64	Pearson	,020(d)	1	,887		
	Chi-Square	,020(d)	1	,887		
	Continuity	,000	1	1,000		
	Correction(a)	,000	1	1,000		
	Likelihood Ratio	,020	1	,888		
	Fisher's Exact Test				1,000	,585
	Linear-by-Linear					
	Association	,020	1	,887		
	N of Valid Cases	85				
65-74	Pearson					
	Chi-Square	,852(e)	1	,356		
	Continuity	,024	1	,878		
	Correction(a)	,024	1	,878		
	Likelihood Ratio	1,438	1	,230		
	Fisher's Exact				1,000	,496
	Test				1,000	
	Linear-by-Linear Association	,818	1	,366		

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	, 878	2	, 645
Tarone's	, 878	2	, 645

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)
Cochran's	, 214	1	, 644
Mantel-Haenszel	, 031	1	, 859

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0 .

Mantel-Haenszel Common Odds Ratio Estimate

Estimate		1,316	
\ln (Estimate)		, 275	
Std. Error of In(Estimate)		, 598	
Asymp. Sig. (2-sided)			, 646
Asymp. 95\%	Common Odds Ratio	Lower Bound	, 407
Confidence Interval		Upper Bound	4,252
	In(Common Odds	Lower Bound	,- 898
	Ratio)	Upper Bound	1,447

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural \log of the estimate.

[^0]: *** Nodules ***
 ** simple crosstabulation **

[^1]: Computed only for a 2×2 table

